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Linearized and rational approximation method for solving
non-linear Burgers’ equation
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SUMMARY

A new numerical method called linearized and rational approximation method is presented to solve
non-linear evolution equations. The utility of the method is demonstrated for the case of di�erentiation
of functions involving steep gradients. The solution of Burgers’ equation is presented to illustrate
the e�ectiveness of the technique for the solution of non-linear evolution equations exhibiting nearly
discontinuous solutions. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The di�erential quadrature method (DQM) can be considered as the ‘direct approach’ of the
traditional collocation (pseudo-spectral) methods in that the governing equations are analo-
gized in terms of practical physical variables instead of usually �ctitious expansion (spectral)
coe�cients [1, 2]. The advantages of the DQM over the latter lie in the ease of its implemen-
tation and more �exibility to choose grid points. The DQM has been extensively employed
to approximate spatial partial derivative. The method can yield highly accurate solutions to
the boundary value problems with a minimal computing e�ort, namely, the so-called spectral
accuracy [1].
As known [3], the application of DQM requires the interpolation in space. Originally, this

interpolation was obtained by using Lagrange polynomials. More recently, the use of Sinc
functions [4, 5] was proposed in References [6–9] to solve initial boundary value problems for
non-linear evolution equations and it was applied to the solution of non-linear wave equations
[6] and to non-linear convection di�usion equations [7]. The advantages of the use of Sinc
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functions rely on the spectral approximation properties [9]. These properties cannot be stated
with the same accuracy in the case of Lagrange polynomials. Sinc functions seem to capture
oscillating behaviours in space, hence, are useful to deal with problems characterized by this
type of solutions. In this paper, we �nd that the use of Sinc functions signi�cantly improves
computational accuracy and e�ciency for the solution of non-linear evolution equations which
develop interior gradients, while the use of Lagrange interpolation gives poor accuracy.
When a partial di�erential equation is discretized in the spatial domain by using the col-

location method, the resulting equations in time are usually sti�. Sti� problems arise in many
areas. If the methods which have �nite regions of absolute stability are used to solve sti�
equations, the step size �t must be constrained so that the stability requirement can be
satis�ed. Thus the step size �t must be a su�ciently small. This leads to require much
computational e�ort to solve the sti� equations. Because A-stable methods have no stability
constraint on �t, A-stable methods are suitable to solve sti� equations. However, it has
proved that all the classical explicit multistep methods and the explicit Runge–Kutta methods
are not A-stable and the implicit linear multistep methods of order greater than two cannot be
A-stable [10]. The implicit Runge–Kutta methods are a class of methods which have suitable
stability characteristics for use on sti� systems. However, the di�culty of these methods is
that there is a large system of non-linear equations to solve at each step, which requires
much computational e�ort. Consequently, these methods are not very e�cient. In this paper,
an A-stable method called the improved rational approximation method is presented based
on the scaling and squaring with diagonal Pad�e approximation method [11] and the precise
integration method [12]. The new method is highly accurate and easy to program.
There are many numerical computational techniques for solving the non-linear evolution

equation. The implicit Crank–Nichlson scheme is one of the most popular numerical methods.
The merit of the implicit Crank–Nichlson scheme is that the method can produce highly
accurate solutions yet keeping unconditional numerical stability for non-linear evolution equa-
tion. However, the much more computational e�ort of solving the result implicit non-linear
algebraic equations has led most researches to stay with explicit methods and their potential
instabilities. In this paper, an increment linearized method is proposed to linearize the non-
linear evolution equation. The characteristic of the method is to compute the values of the
increment function, �u= uk+1 − uk , and then to obtain the values of uk+1 by uk+1 = uk +�u.
We linearize the equation of the increment variable �u by neglecting the non-linear terms
of the order O(�t2). The numerical experiments demonstrate that the increment linearized
method has the advantages of easy formulation, high accuracy and relatively little computa-
tional e�ort.
In this paper, a new numerical method called linearized and rational approximation method

(LRAM) is presented to solve non-linear evolution equations. The utility of LRAM is demon-
strated through the solution of Burger’s equation, a popular benchmark for testing numerical
solutions to partial di�erential equation.
The contents of this paper refer to the above topics and developed in six sections. In

particular:

• the �rst one is the Introduction.
• Section 2 provides technical information on the Sinc functions.
• Section 3 presents the improved rational approximation method for the matrix exponential
and its stability.
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• Section 4 introduces the main steps of the LRAM through the solution of Burgers’
equation.

• Section 5 provides computational experiments and analysis.
• Last section provides a critical discussion of the contents of this paper.

2. SINC FUNCTIONS

Consider u= u(t; x) de�ned over [0; 1]× [0; 1], such that u= u(x; t) is a one one map from
[0; 1] into [0; 1], for every t ∈ [0; 1]. Moreover, consider the collocation

i=1; : : : ; n; Ix= {x1 = 0; : : : ; xi; : : : ; xn=1} (1)

which may be equally spaced, with xi=(i− 1)h and h=1=(n− 1). In general, u= u(t; x) can
be interpolated and approximated by means of Sinc-type functions

u(t; x)=
n∑
j=1
Sj(x; h)uj(t) (2)

where uj(t)= u(t; xj) and

Sj(x; h)=
sin zj
zj

; zj=
�
h
(x − jh) (3)

Taking the derivative of Equation (2) to the �rst and second order, we have

@u
@x
(t; xi)=

n∑
j=1
aijuj(t);

@2u
@x2

(t; xi)=
n∑
j=1
bijuj(t) (4)

where aij and bij are weighting coe�cients related to �rst- and second-order derivatives,
namely

aij=
@Sj
@x
(xi; h); bij=

@2Sj
@x2

(xi; h) (5)

According to Reference [8], we have

aij=
(−1)i−j
h(i − j) ; aii=0; bij=

2(−1)i−j+1
h2(i − j)2 ; bii= − 1

3

(�
h

)2
; i �= j (6)

Let matrix A=(aij), B=(bij).
The paper by Bonzani [7] organizes how the approximation errors induced by the application

of Sinc interpolation techniques propagate in the solution of initial boundary value problems.
Considering that Sinc interpolation is de�ned on the whole real axis, we consider, following

Reference [7], a function f(t; x) such that the variable x is de�ned on the whole real axis R
with f decreasing, for all times, to zero rapidly as x→ ±∞

|f(t; x)|6Ae−�|x| ∀t ∈ [0; 1] (7)
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where A and � are positive constants. Let us set

fN (t; x)=
N∑

i=−N
fi(t)Si(x; h) (8)

with N¿0, and consider at �xed time, the error de�nition

eN = ‖EN (f; h)‖∞= sup
x∈R

|EN (f; h)|= sup
x∈R

|f − fN | (9)

the step h is chosen as follows:

h=
k√
N
; k¿0 (10)

As known [5], error (9) has the functional form O(e−c
√
N ), i.e. is bounded as follows:

‖EN (f; h)‖∞6Ce−c
√
N (11)

with C and c positive constants depending on A, �, and k. According again to Reference [5],
for the r-derivatives of f(t; x) the following estimate holds:

e(r)N = ‖E(r)N (f; h)‖∞= sup
x∈R

|f(r) − f(r)N |6CrN r+1=2e−cr
√
N (12)

where Cr and cr are positive constants depending on A; �; k.
Introduce now an auxiliary function v= v(t; x), de�ned over [0; 1]×R, which satis�es

inequality (7) for every t ∈ [0; 1] and such that

v(t; x)= u(t; x) ∀x∈ [0; 1] (13)

If in Equation (10) the constants N and k (and consequently, the step h) in agreement with
collocation (1) de�ned on [0,1] are chosen as follows:

h=
1

n− 1 =
k√
N

(14)

then for every t ∈ [0; 1], Equations (11) and (12) give the upper bounds for both errors eN (v; h)
and e(r)N (v; h), related to function v on the whole real axis R, as well as for errors eN (v; h) and
e(r)N (v; h) referred to the restriction on [0,1] of the same function. In fact, as a consequence
of Equation (13) and of the de�nition of L∞-norm, one has

‖EN (v; h)‖∞¿‖EN (u; h)‖∞; ‖E(r)N (v; h)‖∞¿‖E(r)N (u; h)‖∞ (15)

Then the above approximations (2) and (4) are proved [5] to have the functional form
O(e−c

√
N ) for the rate of convergence of the error of an N -points approximation in the space

interval [0,1].
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3. THE IMPROVED RATIONAL APPROXIMATION METHOD TO THE MATRIX
EXPONENTIAL AND ITS STABILITY

3.1. The improved rational approximation method to the matrix exponential

One of the most frequently computed matrix functions is the exponential

eAt =
∞∑
k=0

(At)k

k!
(16)

Numerous algorithms for computing eAt have been proposed, but most of them are of
dubious numerical quality, as is pointed out in the survey article by Moler and Van Loan
[13].
The scaling and squaring with diagonal Pad�e approximation method was presented in

Reference [11]. A very useful class of approximations, the Pad�e functions, are used. The
Pad�e functions de�ned by

Rpq(z)=Dpq(z)−1Npq(z) (17)

where

Npq(z) =
p∑
k=0

(p+ q− k)!p!
(p+ q)!k!(p− k)! z

k (18)

Dpq(z) =
q∑
k=0

(p+ q− k)!q!
(p+ q)!k!(q− k)! (−z)

k (19)

Notice that, Rp0(z)=1+z+ · · ·+zp=p! is the pth order Taylor polynomial. Unfortunately, the
Pad�e approximations are good only near the origin. However, this problem can be overcome
by exploiting the fact that eAt =(eAt=m)m. In particular, we scale At by m such that Rpq(At=m)
is a suitable accurate approximation to eAt=m and then raise the resulting matrix to the mth
power. Typically, m is chosen to be a power of 2. It amounts to repeated squaring.
According to Reference [11], the following estimate holds:

‖eA − Fpq‖∞
‖eA‖∞ 6�(p; q)‖A‖∞e�(p; q)‖A‖∞ (20)

where

Fpq =
(
Rpq

(
A
2N

))2N

�(p; q) = 23−(p+q)
p!q!

(p+ q)!(p+ q+ 1)!

Based on the scaling and squaring with diagonal Pad�e approximation method and the precise
integration method, we present a new method called the improved rational approximation
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method to compute eAt . In the following we give a brief introduction to the improved rational
approximation method.
T is given by

T =eA�t

It can be rewritten as

T =(eA�)m=(eB)m (21)

where �=�t=2N , B=A� and m=2N . The choice of N depends on the speci�c problems.
By using the Pad �e functions with p= q=4, we have

eB ∼= I +
1
2 B+

3
28 B

2 + 1
84B

3 + 1
1680B

4

I − 1
2 B+

3
28 B

2 − 1
84 B

3 + 1
1680B

4
(22)

Where I is the unit matrix Equation (22) can be rewritten as

eB ∼= I +
3
28B

2 + 1
1680B

4 + (12 I +
1
84 B

2)B
I + 3

28B
2 + 1

1680B
4 − ( 12 I + 1

84 B
2)B

(23)

Let D=B2, U0 = ( 328 I +
1

1680 D)D; V0 = (
1
2 I +

1
84 D)B, (23) can be expressed as

eB =
I +U0 + V0
I +U0 − V0

(I +U0 − V0)(eB − I) = 2V0
eB = I + (I + F)−1(2V0)

where F =U0 − V0. Let T0 = (I + F)−1(2V0), we have
eB= I + T0 (24)

Substitution of Equation (24) into Equation (21) gives

T =(I + T0)2
N

A recurrence procedure of computing T is proposed

Ti+1 =Ti(2I + Ti); i=0; 1; : : : ; N − 1 (25)

Finally, we have

T = I + TN (26)

Since � is a extremely small time interval, F is ‘close’ to the zero matrix. The condition
number of I+F is small, so that T0 can be computed accurately by Gauss method. In order to
assure the accuracy of T , we only compute the Ti and do not directly compute I + Ti, which
is the main idea of the precise integration method to obtain the highly accurate solution.
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3.2. Stability

Obviously stability of the ordinary di�erential equation of order one is not only a property of
the numerical method but also the di�erential equation it is used to solve. In order that we
can talk about the stability of the numerical method, we always examine the stability when
it is used to solve the test problem:

y′= �y (27)

where � is a complex constant. (To assure the di�erential equation inherently stable, we
assume that Re �¡0). The solutions of Equation (27) can be expressed as

y=e�ty0

Let the time step be �t. We can obtain equally space points in time interval:

t0 = 0; t1 =�t; t2 = 2�t; : : : ; tk = k�t; : : :

then

y1 = e��ty0; y2 = e��ty1; : : : ; yk+1 = e��tyk ; : : :

By using the improved rational approximation method, we have

yk+1 =Tyk (28)

where T is obtained by (26). Equation (28) also can be written as

yk+1 =

(
1 + 3

28 (��)
2 + 1

1680 (��)
4 + ��( 12 +

1
84 (��)

2)
1 + 3

28 (��)
2 + 1

1680 (��)
4 − ��( 12 + 1

84 (��)
2)

)2N
yk

If Re � ¡ 0, ∣∣∣∣∣1 +
3
28 (��)

2 + 1
1680 (��)

4 + ��( 12 +
1
84 (��)

2)
1 + 3

28 (��)
2 + 1

1680 (��)
4 − ��( 12 + 1

84 (��)
2)

∣∣∣∣∣¡1 ∀�

can be proved easily [14]. Thus the improved rational approximation method is A-stable.
There is no restriction on �t. The method is suitable to solve the sti� equations.

4. LRAM FOR THE NON-LINEAR BURGERS’ EQUATION

In this paper, the main steps of the LRAM are introduced through the solution of Burgers’
equation.
Burger’s equation is the non-linear partial di�erential equation de�ned by

@u
@t
+ u

@u
@x
=
1
Re
@2u
@x2

(29)

and has become a popular benchmark for testing numerical solutions to partial di�erential
equations. Equation (29) serves as a useful model since it possesses features in common with
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the Navier–Stokes equation in that the term u(@u=@x) represents a non-linear convective term
while (1=Re)(@2u=@x2) represents a dissipative term. The Reynolds number, Re, determines
the importance of convection versus that of dissipation. In addition, for certain boundary
and initial conditions, the solution can approach a discontinuous or shock behaviour. Finally,
since analytical solutions to Burger’s equation have been investigated extensively [15–18] and
are available for a wide range of initial and boundary conditions [15–20], the convergence
properties of the various discretization schemes are readily assessed.
We consider the following initial boundary value problem:

@u
@t
+ u

@u
@x
=
1
Re
@2u
@x2

; −16x61; 06t6T (30)

u(−1; t) = u(1; t)=0; 06t6T (31)

u(x; 0) =− sin �x; −16x61 (32)

Cole [16] obtained an analytical solution to (30)–(32) which was later tabulated by Berton
and Platzman [20] and is given by

u(x; t)=
4�
Re

[∞∑
n=1
nane−n

2�2t=Re sin n�x=
(
a0 + 2

∞∑
n=1
ane−n

2�2t=Re cos n�x
)]

(33)

where an=(−1)nIn(Re=2�) and In(z) denotes the modi�ed Bessel function of the �rst kind.
In order to be in agreement with collocation (1) de�ned on x∈ [0; 1], we make the following

co-ordinate transform:

�=
x + 1
2
; v(�; t)= u(x; t) (34)

Then Equations (30)–(32) can be expressed as

@v
@t
+
1
2
v
@v
@�
=

1
4Re

@2v
@�2
; 06�61; 06t6T (35)

v(0; t) = v(1; t)=0; 06t6T (36)

v(�; 0) =− sin �(2�− 1); 06�61 (37)

In the following, we give the main steps of the LRAM for solving Equations (35)–(37).
Step 1: Linearize Equation (35) by the increment linearized method. Let

v(�; t)= vk(�) + w(�; t); tk6t6tk+1 (38)

where vk(�)= v(�; tk). tk is the time of the kth layer. Obviously, w(�; tk)=0. De�ne
�t= tk+1 − tk . Equation (35) can be expressed as

@w
@t
= − 1

2
w
@vk

@�
− 1
2
vk
@w
@�

− 1
2
w
@w
@�
+

1
4Re

@2w
@�2

− 1
2
vk
@vk

@�
+

1
4Re

@2vk

@�2
(39)
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Drop the non-linear term, 12 w@w=@�, of the order O(�t
2), we can get the linear equation

@w
@t
= − 1

2
w
@vk

@�
− 1
2
vk
@w
@�
+

1
4Re

@2w
@�2

− 1
2
vk
@vk

@�
+

1
4Re

@2vk

@�2
(40)

The increment linearized method has the advantages of easy formulation, high accuracy and
relatively little computational e�ort.
Step 2: Discretize the equation in the spatial domain by applying DQM using the Sinc

functions.
The interval [0; 1] in � direction is discretized by considering the set �1 = 0; : : : ;

�i=(i−1)h; : : : ; �n=1, where h=1=(n−1). By Applying DQM, Equation (40) can be rewrit-
ten as,

@W
@t
= − 1

2
W ◦ (AV k)− 1

2
V k ◦ (AW ) + 1

4Re
BW − 1

2
V k ◦ (AV k) + 1

4Re
BV k (41)

where ‘◦’ denotes the Hadamard product of matrices. A=(aij) and B=(bij) are, respectively,
DQ weighting coe�cient matrices of the 1st and 2nd order derivative in � direction according
to (6). W =(Wi) and V k =(V ki ) are vectors and Wi=w(t; �i); V ki = v

k(�i).
Step 3: Obtain the equation for the internal nodes by using the block matrix technique.
W;V k; A and B are, respectively, split into the following block matrices:

W =



W1

�W

Wn


 ; V k =



V k1

�V
k

V kn


 ; A=



A11 AT12 A13

A21 �A A23

A31 AT32 A33


 ; B=



B11 BT12 B13

B21 �B B23

B31 BT32 B33


 (42)

where

�W = [W2; W3; : : : ; Wn−1]T; �V k =[V k2 ; V
k
3 ; : : : ; V

k
n−1]

T

A11 = a11; A12 = [a12; a13; : : : ; a1(n−1)]T; A13 = a1n; A21 = [a21; a31; : : : ; a(n−1)1]T

A23 = [a2n; a3n; : : : ; a(n−1)n]T; A31 = an1; A32 = [an2; an3; : : : ; an(n−1)]T; A33 = ann

B11 = b11; B12 = [b12; b13; : : : ; b1(n−1)]T; B13 = b1n; B21 = [b21; b31; : : : ; b(n−1)1]T

B23 = [b2n; b3n; : : : ; b(n−1)n]T; B31 = bn1; B32 = [bn2; bn3; : : : ; bn(n−1)]T; B33 = bnn

�A=



a22 · · · a2(n−1)

...
. . .

...

a(n−1)2 · · · a(n−1)(n−1)


 ; �B=



b22 · · · b2(n−1)

...
. . .

...

b(n−1)2 · · · b(n−1)(n−1)




After the block matrix being used, W1; Wn represent the values at the boundary points.
Substituting Equation (42) into Equation (41), we can get the equation satis�ed by the internal

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:509–525
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nodes

@ �W
@t
=−1

2
�W ◦ (A21V k1 + �A �V

k
+ A23V kn )−

1
2
�V
k ◦ (A21W1 + �A �W + A23Wn) +

1
4Re

(B21W1 + �B �W

+B23Wn)− 1
2
�V
k ◦ (A21V k1 + �A �V

k
+ A23V kn ) +

1
4Re

(B21V k1 + �B �V
k
+ B23V kn ) (43)

According to the boundary condition (36), V k1 =V
k
n =0, V

k+1
1 =V k+1n =0. Thus W1 =Wn=0.

Equation (43) can be expressed as

@ �W
@t
= − 1

2
�W ◦ �A �V k − 1

2
�V
k ◦ �A �W +

1
4Re

�B �W − 1
2
�V
k ◦ �A �V k + 1

4Re
�B �V

k
(44)

Equation (44) can be rewritten as

d �W
dt
=G �W +D (45)

Here

G=−diag
(
1
2
�A �V

k
)
− diag

(
1
2
�V
k
)
�A+

1
4Re

�B

D=−diag
(
1
2
�V
k
)
�A �V

k
+

1
4Re

�B �V
k

where the matrix G and vector D are known. The diag(U) denotes diagonalization of vector U.
Step 4: Solve the ordinary di�erential equations (45) by the improved rational approxima-

tion method.
Equation (45) can be rewritten as

d
dt
(e−Gt �W )= e−GtD (46)

Integrate Equation (46), we have

�W
k+1
= eG�t �W

k
+
∫ tk+1

tk
eG(t

k+1−t)D dt

= eG�t �W
k
+
∫ �t

0
eG(�t−�)D d� (47)

Since �W
k
=0,

�W
k+1
=
∫ �t

0
eG(�t−�)D d� (48)
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Applying the trapezoid integration formula, we have

�W
k+1
=
�t
2
(eG�tD+D) (49)

Apply the improved rational approximation method to compute eG�t . Then the value of �W
k+1

is obtained. According to (38), we can get the value of V k+1.
The trapezoid integration formula reaches the second-order accuracy. Equation (39) is lin-

earized by neglecting the non-linear terms of the order O(�t2). According to (20), the order
of the improved approximation method computing eG�t is greater than two. Therefore, scheme
(49) can reach the second-order accuracy.
In the following, we introduce how to solve the Burger’s equation by the Newton’s method

in order to be compared with the LRAM. We give the formula of the Jacobian matrix, and
computation e�ort of the Newton’s method is reduced greatly. If the Newton’s method, not
computing the Jacobian matrix, requires much more computation e�ort to solve the non-linear
system of equations.
Equation (35) can be rewritten as

@v
@t

− Lv=0 (50)

where

Lv=
1
4Re

@2v
@�2

− 1
2
v
@v
@�

(51)

Now using the central di�erence approximation for @v=@t, we have

vk+1 − vk
�t

− 1
2
L(vk+1 + vk)=0 (52)

where �t= tk+1 − tk . Equation (52) also can be expressed as
1
4Re

@2vk+1

@�2
− 1
2
vk+1

@vk+1

@�
− 2
�t
vk+1 = −

(
1
4Re

@2vk

@�2
− 1
2
vk
@vk

@�
+
2
�t
vk
)

(53)

Applying DQM for Equation (53), we have

1
4Re

BV k+1 − 1
2
V k+1 ◦AV k+1 − 2

�t
V k+1 = −

(
1
4Re

BV k − 1
2
V k ◦AV k + 2

�t
V k
)

(54)

where V k , A and B are de�ned as (42). So we can get the equation satis�ed by the internal
nodes

1
4Re

�B �V
k+1 − 1

2
�V
k+1 ◦ �A �V k+1 − 2

�t
�V
k+1
=F (55)

where

F = −
(
1
4Re

�B �V
k − 1

2
�V
k ◦ �A �V k + 2

�t
�V
k
)
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Let Y = �V
k+1
, we have

’(Y )=
1
4Re

�BY − 1
2
Y ◦ �AY − 2

�t
Y − F =0 (56)

By using SJT product [2], we have

@’(Y )
@Y

=
1
4Re

�B− 1
2
I 
 �AY − �A 


(
1
2
Y
)
− 2
�t
I

where ‘
’ denotes the SJT product, and I denotes the identity matrix. According to Reference
[2], it also can be expressed as

@’(Y )
@Y

=
1
4Re

�B− 1
2
diag( �AY )− diag

(
1
2
Y
)
�A− 2

�t
I (57)

where diag(V) denotes diagonalization of vector V. Equation (57) is the formula of the
Jacobian matrix. Therefore, the iteration formula of the Newton–Raphson method in solution
of the Equation (56) is

Y (n+1) =Y (n) −
[
@’(Y (n))
@Y

]−1
’(Y (n)) (58)

5. NUMERICAL RESULTS AND ANALYSIS

Table I shows the sti�ness of the Equation (45) with di�erent time. In the Table I, s is called
the sti�ness ratio, s= max16j6m |Re(�j)|=min16j6m |Re(�j)|. It can be seen that Equation (45)
is a sti� equation and the sti�ness is very serious. If the time integration for Equation (35)
is performed using a explicit fourth-order Runge–Kutta scheme, it was found that the explicit
fourth-order Runge–Kutta scheme had a maximum time-step limitation imposed by stability.
In the paper [21], the time step is chosen su�ciently small (�t=10−4) to solve the Burger’s
equation by the Runge–Kutta scheme. Consequently for Equation (45), the explicit Runge–
Kutta schemes are not competitive.
For moderately large values of the Reynolds number, the initial sine wave for Burger’s

equation develops nearly into a sawtooth wave at a non-dimensional time of about t=0:3.
Before this time, numerical evaluation of the solution is relatively easy due to the smooth
form of the initial function. At later times, however, computing an accurate numerical solution
becomes increasingly di�cult as the solution steepens at the origin.
Let the number of grid points in � direction is n and the time step is �t. De�ne maxerror

as being the maximum of the absolute errors. Testing CPU time is executed on a Pentium
733 computer with 256 M memory. Matlab6.5 is used for programming.

Table I. Sti�ness of Equation (45).

t 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
s 1337 1308 1146 944 762 613 495 400 322 257 203 157
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Table II. Maximal error for Burgers’ equation by the LRAM: t=0:3, �t=0:03, Re=100.

n 29 33 37 41 45 49 53 57

Maxerror 0.0093 0.0075 0.0063 0.0054 0.0048 0.0043 0.0039 0.0036
CPU time (s) 0.34 0.36 0.36 0.40 0.40 0.41 0.42 0.45
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Figure 1. Numerical results and absolute errors for Burgers’ equation by the
LRAM (Re=100, t=0:3, �t=0:03, n=55).

The maximal error at t=0:3 by the LRAM with the time step �t=0:03 are shown in the
Table II using di�erent n. With the increase in n, we observe improved accuracy, as expected.
In contrast, as reported in Reference [21], a time step of 10−4 was used to achieve comparable
accuracy. The computational e�ort by the LRAM is signi�cantly little. The LRAM proves to
be e�cient for the sti� problems.
Figures 1–3 show the numerical solutions and absolute errors by the LRAM for Re=100

at t=0:3, 0.4, 0.5, respectively. Also shown is the analytical solution, (33). |Uanal − Unum|
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Figure 2. Numerical results and absolute errors for Burgers’ equation by the
LRAM (Re=100, t=0:4, �t=0:02, n=59).

denotes the absolute errors. As the time is increased, the ‘shock’ pro�le becomes steeper.
For all cases, the numerical solutions by using the LRAM give good agreement with the
analytical ones. The use of the LRAM signi�cantly improves computational accuracy for the
problems involving steep gradients. The errors obtained by using the LRAM are substantially
smaller than those obtained using the methods in Reference [21]. Figures 1–3 show that the
boundary layer is sharp and has no overshoot. The numerical solutions by using the LRAM
are essentially oscillation-free. In contrast to the split range quadrature discretization method
(SRQDM) in Reference [21], the LRAM requires much less formulation and programming
e�ort and can yield highly accurate solutions with relatively little computational e�ort. The
numerical results by using the LRAM still remain highly accurate even though the time
t reaches 0.5. In fact, we can get more accurate numerical solutions by decreasing the time
step size and meanwhile increasing the number of grid points. For example, the maximal error
obtained by using the LRAM is 4:43× 10−4 at t=0:3 for Re=100, �t=0:0003 and n=500.
The Sinc functions are known to yield spectral accuracy for smooth periodic functions [22].
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Figure 3. Numerical results and absolute errors for Burgers’ equation
by the LRAM (Re=100, t=0:5, �t=0:025, n=73).

Table III. Maximal error for Burgers’ equation by Newton’s method: t=0:3, �t=0:03, Re=100.

n 29 33 37 41 45 49 53 57

Maxerror 0.0094 0.0075 0.0063 0.0055 0.0049 0.0044 0.0040 0.0038
CPU time 0.44 0.44 0.44 0.45 0.47 0.50 0.51 0.55

The maximal errors at t=0:3 by the Newton’s method (58) using di�erent n are shown in
Table III. The di�culty of using the Newton’s method is to obtain the Jacobian matrix. It
is well known that the Jacobian matrix is not easy to compute. If the Newton’s method, not
computing the Jacobian matrix, requires much more computation e�ort to solve the non-linear
system of equations. The LRAM overcomes the above drawbacks of the Newton’s method.
The LRAM linearizes the non-linear evolution equation by neglecting the non-linear terms
of the order O(�t2), and it can yield highly accurate solutions with little computation e�ort.
Here, we obtained the formula of the Jacobian matrix, and computation e�ort of using the
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Table IV. Computational-e�ciency comparison, Burgers’ equation, t=0:3, �t=0:03, Re=100.

n 21 23 25 27 29 31 33

Maxerror(Sinc) 0.0261 0.0207 0.0157 0.0121 0.0093 0.0087 0.0075
Maxerror(Lagrange) 0.0574 0.0499 0.0432 0.0373 0.0321 0.0275 0.0234

Newton’s method is reduced greatly. The computational e�ciency of the LRAM and the
Newton’s method (58) can be compared by considering the results shown in the Tables II
and III. It can be seen that the CPU time by the LRAM is less than the one by the Newton’s
method to achieve comparable accuracy.
The computational-e�ciency comparison of the Sinc functions and Lagrange interpolations

for Burgers’ equation at t=0:3 is shown in Table IV. The expansive Chebyshev–Gauss–
Loabtto points are used in the case of Lagrange interpolations. It is apparent that the Sinc
functions are more e�cient than the Lagrange interpolations for the Burgers’ equation involv-
ing steep gradients. It also can be seen that the accuracy of the solution increases rapidly
with n by using the LRAM.

6. CONCLUSIONS

We have shown that the use of the LRAM signi�cantly improves computational accuracy
for the problems involving steep gradients. The LRAM requires much less formulation and
programming e�ort and can yield highly accurate solutions for non-linear Burgers’ equations
with relatively little computational e�ort. We believe that the LRAM can be applied more
widely in scienti�c and engineering computation. In addition, we �nd that the Sinc functions
are more e�cient than the Lagrange interpolations for the Burgers’ equation involving steep
gradients.
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